skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schearer, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PurposeMeasurable results of efforts to teach empathy to engineering students are sparse and somewhat mixed. This study’s objectives are (O1) to understand how empathy training affects students’ professional development relative to other educational experiences, (O2) to track empathy changes due to training over multiple years, and (O3) to understand how and what students learn in empathy training environments. MethodsStudents in a multiple-semester empathy course completed surveys ranking the career development impact of the empathy program against other college experiences (O1), rating learning of specific empathy skills (O2), and ranking program elements’ impact on empathy skills (O3). Intervention and control groups completed the Interpersonal Reactivity Index and Jefferson Scale of Empathy at four time points (O2). Cohort students participated in post-program interviews (O1, O3). ResultsO1: Empathy training impacted career development more than several typical college activities but less than courses in major. O2: Students reported gains in four taught empathy skills. Cohort students showed significant increases in the Jefferson Scale while the control group did not. There were no significant changes in Interpersonal Reactivity Index scores. O3: interactive exercises had a significant effect on students’ learning all empathy skills while interactions with people with disabilities had significant effect on learning to encounter others with genuineness. Students valued building a safe in-class community facilitating their success in experiential environments. ConclusionsThis study highlights empathy skills’ importance in engineering students’ development, shows gains in empathy with training, and uncovers key factors in students’ learning experience that can be incorporated into engineering curricula. 
    more » « less
  2. Free, publicly-accessible full text available May 1, 2026
  3. Functional electrical stimulation is a promising technique for restoring arm function to those with paralysis from a high spinal cord injury. While simple controllers are easy to implement, model-based controllers are likely better equipped to leverage the arm’s kinematic and dynamic complexity, particularly for the high variations associated with functional arm movement. One modelling technique for a model-based controller is Gaussian Process Regression. Previous simulation work has shown promise leveraging whole-arm error data to identify the arm’s various subsystems, but used perfect simulated data. We asked caregivers to correct a robotic arm’s movement as simulated muscles generated torque. The simulated muscles were controlled as if they were electrically stimulated human arm muscles. This study demonstrates non-expert caregivers’ ability to collect this error data via whole-arm corrections, and provides insight into their ability to improve arm subsystem models made with Gaussian Process Regression. Despite significant error in caregivers’ ability to provide force corrections to hold the robot in a static configuration, these corrections were leveraged to significantly improve muscle models; the muscles that improved the most were the ones primarily used to move the physiologically actuated robot. 
    more » « less
  4. IntroductionIndividuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system. MethodsIn this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both an exoskeleton and an FES system. The MPC cost function is designed to distribute actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power consumption, while ensuring smooth movements along different trajectories. Our controller was tested with nine able-bodied participants using FES surface stimulation paired with an upper limb powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller, and we measured trajectory error and torque while moving the participant through two elbow flexion/extension trajectories, and separately through two wrist flexion/extension trajectories. ResultsThe MPC-based hybrid controller showed a reduction in sum of squared torques by an average of 48.7 and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively, with only small differences in tracking accuracy compared to the exoskeleton alone. DiscussionTo realize practical implementation of hybrid FES-exoskeleton systems, the control strategy requires translation to multi-DOF movements, achieving more consistent improvement across participants, and balancing control to more fully leverage the muscles' capabilities. 
    more » « less
  5. Contribution: This study uncovered specific benefits, challenges, and facilitators to participating in undergraduate research for physically disabled students (PDSs) taken directly from students themselves. Background: Disabled students (DSs) earn bachelor's degrees and gain employment in STEM careers at rates lower than their peers. The paradigm shift in undergraduate STEM education from lecture-based to inquiry-based learning is an opportunity to explore new options for including DSs. Little is known about designing inquiry-based learning settings for DSs. Research Question: This article seeks to increase the understanding of how to support PDSs in inquiry-based settings. Specifically, the authors documented the experiences of PDS in a summer undergraduate research program to uncover: 1) benefits they receive from participating; 2) specific challenges these students face; and 3) novel ways to facilitate participation. Methodology: The authors conducted semistructured interviews of five undergraduate PDS, who participated in a summer research program. The paper reports representative student responses across themes related to benefits, challenges, and facilitators of success in the program. Findings: The students enjoyed many benefits typically gained from undergraduate research, most notably career clarification. Additionally, the students experienced personal growth, including improved self-advocacy, increased confidence in their independence, and greater understanding of limitations. The main facilitator was the positive attitudes of research mentors. A principal challenge was the lack of knowledge about disability in peers without disabilities who participated in the program. 
    more » « less